If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-19+10=0
We add all the numbers together, and all the variables
7x^2-9=0
a = 7; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·7·(-9)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*7}=\frac{0-6\sqrt{7}}{14} =-\frac{6\sqrt{7}}{14} =-\frac{3\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*7}=\frac{0+6\sqrt{7}}{14} =\frac{6\sqrt{7}}{14} =\frac{3\sqrt{7}}{7} $
| x+11=3x=1 | | -4.1=w/6+15.1 | | x^2+50x+7200=0 | | 2-(2x-4)=4 | | 4(2n+4)=10n-2 | | x/3=10=-12 | | -4+2x=-16+23 | | 10-6(x+1)=10 | | 1/x=1.8 | | 8u-u=28 | | 4^x=6 | | x-8=9x-38 | | 6z-6=7 | | 3x^2=5^x | | 9÷x=5x-3 | | p/7+p,p=14 | | -9(x+6)=-207 | | q-18=3 | | 12+3y=-15 | | 14-2n+4n=-5 | | 22+y+5y-3=3y | | 4y-17=7 | | 7r-5r+8=8r+8-r | | 14(d/2-8)=161 | | -9y-6+6y=19 | | 3-x=6*x-39 | | 3n=-48 | | (625256)^(5x−4)=1 | | 6x-5+x+8+22x-3=180 | | -4/8k=-10 | | 14x=169 | | 16x+13x+16x=180 |